The Role of Sodium Carbonate and Oxides Supported on Lanthanide Oxides in the Oxidative Dimerization of Methane

YOUDONG TONG, MICHAEL P. ROSYNEK, AND JACK H. LUNSFORD

Department of Chemistry, Texas A & M University, College Station, Texas 77843

Received May 21, 1990

The addition of Na₂CO₃ to three representative lanthanide oxides, La₂O₃, CeO₂, and Yb₂O₃, has a marked effect on the catalytic properties of these materials for the oxidative dimerization of methane. The effect is most dramatic for $CeO₂$, which, upon addition of Na₂CO₃, is transformed from a total oxidation catalyst to one which is reasonably selective for the conversion of $CH₄$ to C_2H_4 and C_2H_6 . Results obtained by X-ray photoelectron spectroscopy and ion scattering spectroscopy show that a sodium carbonate/sodium oxide phase largely covers the lanthanide oxide surface, thus the catalytic properties are those of the sodium phase, rather than those of the lanthanide oxide. Indeed, the specific activities of the Na^+/Ln_xO_y catalysts and of pure Na₂CO₃ were the same within a factor of 2.5, with Na^+/Yb_2O_3 at the high end of the range. The specific activities of pure lanthanide oxides were considerably greater than those of the modified catalysts. Although $Na₂CO₃$ is the principal compound present on the surface of the *Na+/Ln_xO_y* catalysts, it is probable that $Na₂O₂$ is responsible for the activation of CH₄. © 1990 Academic Press, Inc.

INTRODUCTION

The lanthanide oxides differ greatly with respect to their ability to catalyze the oxidative dimerization of methane $(1, 2)$; however, when these oxides are modified with alkali metal ions, their differences are often less apparent. The properties of these oxides in the partial oxidation of methane have been reviewed recently by Hutchings *et al.* (3). Since the goal of most of the previous research has been to optimize the selectivity or the yield of ethane and ethylene $(C, \text{prod-}$ ucts), the reaction have often been carried out under conditions of high oxygen conversion, making it difficult to extract intrinsic activities from the data.

We have shown that the large differences in C_2 selectives observed among various members of the lanthanide oxide series result mainly from secondary reaction between $CH₃$ · radicals and the metal oxide (4). Those oxides which have accessible multiple cationic oxidation states $(CeO₂)$, Pr_6O_{11} , and Th_4O_7) react with $CH_3 \cdot$ radicals, presumably by the reaction

$$
\mathbf{M}^{(n+1)+}\mathbf{O}^{2-} + \mathbf{CH}_3 \cdot \rightarrow \mathbf{M}^{n+}(\mathbf{OCH}_3)^-(1)
$$

and the resulting surface methoxide ions provide a route to the formation of $CO₂$. In the absence of such secondary reactions, the CH₃ \cdot radicals couple to form the desired C_2 products.

When $CeO₂$ is modified by the addition of Na_2CO_3 , it ceases to be a good radical scavenger, and becomes an effective catalyst for the production of gas phase CH_3 . radicals (4). These changes are paralleled by its transformation from a total $CH₄$ oxidation catalyst to one that is effective in the oxidative coupling reaction. Similar changes in selectivity have been reported by Gaffney *et al. (5)* for the catalytic properties of $Pr₆O₁₁$ before and after its modification with sodium salts.

Quite different behaviors are exhibited by the other members of the lanthanide oxide series, of which La_2O_3 and Yb_2O_3 are examples of the extremes. Lanthanum oxide is very effective in the formation of gas phase $CH₃$ • radicals, and, consistent with this fact, it is a poor radical scavenger (4). Ytterbium oxide is neither a good radical producer nor a good radical scavenger.

In our previous study, it was noted that a sodium carbonate/sodium oxide phase largely covered the CeO₂ surface and that the specific activity of nominally pure $Na₂CO₃$ for the generation of $CH₃ \cdot$ radicals approached that of the Na^+/CeO , catalyst (4). These preliminary observations suggested that the lanthanide oxide may serve primarily as a support for an active form of sodium oxide. In order to determine the validity of this hypothesis, three diverse members of the lanthanide oxide series $(La₂O₃, CeO₂, and Yb₂O₃)$, both with and without added sodium, were evaluated with respect to their catalytic performances and their abilities to generate gas-phase CH_3 . radicals. With the sodium-modified catalysts, care was taken to operate under conditions of moderate CH_4 and O_2 conversions, so that the specific activities of the catalysts could be compared.

EXPERIMENTAL

Catalyst preparation. The starting materials were Na_2CO_3 (99.999%), La_2O_3 $(99.99\%),$ CeO₂ (99.9%) , and Yb₂O₃ (99.9%), and were obtained from Aldrich Chemical Co. The sodium-doped lanthanide oxide catalysts, $Na^{+}/Ln_{x}O_{y}$, were made by dissolving sodium carbonate in deionized water, adding the appropriate amount of Ln_xO_y to the solution, and then evaporating the water with vigorous stirring until a thick paste was formed. The paste was dried at 120°C overnight and then calcined at 700°C in air for 10 h. This calcination step is necessary to achieve stable activities of the catalysts. Before contacting with reactant, the catalysts were pretreated in flowing O_2 at temperatures close to or greater than the operational temperatures, e.g., 780°C for Na^+/CeO_2 . The sodium content is expressed as the weight percentage of sodium in the lanthanide oxide, and was determined using inductively coupled plasma (ICP) emission spectroscopy. Pure $La₂O₃$, CeO₂, and $Yb₂O₃$ were treated in the same manner, but without the addition of sodium.

Catalytic experiments. The catalytic data were obtained using conventional flow reactors constructed of alumina (Omegatite 450, 99.8% Al₂O₃). One reactor was 3.2-mm i.d. in the region where the catalyst was located, and immediately below the catalyst bed a four-holed alumina insert (3.2-mm o.d., 0.5 mm-diameter holes) was used to reduce the time that the product stream remained in the heated region of the system. A 0.050 g catalyst bed was supported between thin layers of quartz wool. Above the catalyst was a layer of quartz chips that served to preheat the gases and to minimize the purely homogeneous reactions. Blank runs, in which the catalyst was replaced by quartz chips, showed negligible conversion in the oxidation of methan. A bare thermocouple coated with a thin layer of an inert cement was placed inside the catalyst bed via two of the holes in the exit tube.

A second reactor was 10-mm i.d., and a two-holed alumina insert (6.4-mm o.d., 1.5-mm-diameter holes) was placed below the catalyst bed, as shown in Fig. 1. Except for larger dimensions and a larger catalyst bed (0.50 g), this reactor was essentially the same as the one described above. A coated thermocouple located in the center of the catalyst bed was used to measure the temperature (T_{in}) during reaction, and a bare thermocouple on the outside of the reactor was used to control the temperature (T_{out}) .

The system was allowed to reach steady state, which was usually ca. 10 h after initial exposure to the reactants, before the data reported here were obtained. Product gas analyses were performed using a conventional gas chromatographic (GC) technique. A thermal conductivity detector was used to analyze for CH₄, O_2 , C_2H_4 , C_2H_6 , CO , and $CO₂$, while propane and butane

FIG. 1. Alumina reactor used to obtain the data at high levels of oxygen conversion.

were analyzed using a flame ionization detector. The gases used to make up the feed gas were $CH₄$ (Matheson, 99.97%), $O₂$ (Matheson, 99.6%), and He (Airco, 99.99%).

ESR experiments. The matrix isolation electron spin resonance (MIESR) system used in this study has been described in detail previously (6). A flow reactor containing a layer of the catalyst of interest was coupled to the MIESR system. The gases exiting from the catalyst were allowed to leak into a low pressure collection region where part of the methyl radicals were frozen onto a cold (14 K) sapphire rod. The rod was then lowered into the ESR cavity, and the spectrum was recorded. This system was used to determine the activities of the $Na⁺/$ Ln_xO_y catalysts, as well as those of the pure compounds, for the formation of gas phase $CH₃$ · radicals. The catalysts studied in the MIESR system were steady-state catalysts from the conventional reactors. A typical procedure for the MIESR experiment involved retreating the sample at elevated temperatures in $O₂$ for 1 h, evacuating the gas phase for 10 min, and then admitting the reactants. The time interval between the

introduction of reactants and the beginning of a collection of $CH₃ \cdot$ radicals was 1 h. The relative concentration of the gas phase $CH₃$ · radicals was determined from the signal intensity of the ESR spectrum of the $CH₃$ · radicals.

Characterization techniques. Powder X-ray diffraction (XRD) patterns were obtained with a computer-controlled Seifert-Scintag Pad II automated powder diffractometer, using $CuK\alpha$ radiation. The crystalline phases present in the catalysts were determined after various treatments.

The near-surface "compositions of the Na^+/Ln_2O_3 catalysts were determined by X-ray photoelectron spectroscopy (XPS) on a Hewlett-Packard Model HP5950A instrument, using monochromatic *A1Ka* excitation. Used catalyst samples were further heated *in vacuo* at 250-300°C for about 10 h to remove adsorbed water and weakly bound carbon dioxide. The samples were then pressed into wafers and loaded into the spectrometer without exposure to the atmosphere. The regions scanned covered the ls binding energies of oxygen, carbon, and sodium, as well as the $3d$ binding energies of La and Ce and the 4d binding energy ofYb. Adventitious carbon with an assigned binding energy of 285 eV was used as an internal standard to determine the binding energies of the other species. Ion scattering spectroscopy (ISS), which is highly surface sensitive technique, was used to determine the composition of the top layer of a used $Na⁺/CeO₂$ catalyst. ISS data were obtained on a Leybold MAX-200 spectrometer at a fixed retardation ratio of 4, using 2.3 keV 4He÷ ions.

The surface areas of the catalysts were determined using a dynamic BET system from Quantachrome Corp., with nitrogen as the adsorbate. For those materials of low surface area (< 0.5 m²/g), such as Na₂CO₃, a 2 to 3-g sample was used in the measurement to reduce the error caused by the low surface area. In addition, the surface area of the sample tube used in the measurements was determined and subtracted from the values obtained for those materials. Although the systematic error may be somewhat larger, the relative errors (repeatability) for surface areas measured in the same system were approximately ± 0.02 m²/g for samples having an area < 0.5 m²/g and ± 0.04 m²/g for samples having an area > 0.5 m²/g.

RESULTS AND DISCUSSION

Characterization. Both the fresh and used *Na+/LnxOy* catalysts exhibited the same XRD patterns, and the only crystalline phases detected in the catalysts were the corresponding lanthanide oxides; no new crystalline species, such as Na_2CeO_3 or NaYbO_2 , were found. It is a little surprising that crystalline phases due to sodium carbonate or the oxides of sodium were not observed by XRD, when one considers the amount of $Na₂CO₃$ added to the catalysts. Failure to observe a phase that corresponds to a sodium compound suggest that the sodium carbonate existed as very small crystallites or as a thin layer on the surfaces of the lanthanide oxides. These results may be contrasted with those obtained on a used Na+/CaO catalyst, for which a distinct $Na₂CO₃ phase was observed (7).$

As an example of the XPS results, the spectra of 4% Na⁺/CeO₂ which had been used in a catalytic test are shown in Fig. 2. In this O ls region, three peaks may be resolved, at binding energies of 529, 532, and 534 eV. Comparison of these results with the XPS spectra of $CeO₂$, Na₂CO₃, NaHCO₃, and Na₂O₂ indicate that the peaks at 529 and 532 eV may be assigned to O^{2-} and to oxygen in CO_3^{2-} , respectively. The broad peak at 532 eV may include contributions from OH⁻ and even O_2^{2-} oxygen. The broader shoulder at 534 eV is tentatively assigned to oxygen present in $HCO₃$ ions. The presence of CO_3^{2-} is supported by a C 1s peak at 289 eV. The $HCO₃⁻$ species, if present, should have resulted in a C ls line at 289 eV, but this peak may have been below the limits of detection (8).

From the areas under the Na ls and the Ln 3d and 4d peaks, with appropriate cor-

FIG. 2. XPS spectra in the O(1s) region of 4% Na⁺/ CeO₂ catalyst after (a) calcination in air at 700° C for 16 h, (b) further calcination in O_2 at 780°C for 2 h, and (c) use as a catalyst at 780°C for 17 h.

rections for cross sections, the atomic ratios of the metal ions in the near-surface region were determined for the used catalysts, and these are compared with the bulk atomic ratios from ICP analyses in Table 1. Clearly, the Na : Ln ratios are greater at the surface than in the bulk for all three catalysts, with the ratio being greatest for the 4% Na⁺/ $CeO₂$ catalyst. The ISS results shown in Fig. 3 confirm that a phase containing sodium ions completely covered the used 4% Na⁺/ CeO₂ catalyst. Initially, almost no Ce ions were detected on the surface; only $Na⁺$ ions were observed. After several minutes of ion etching, however, the underlying Ce ions began to appear. These ISS results are con-

TABLE 1

Na : Ln Atomic Ratios Determined by XPS and ICP^a

^a Used catalysts:Na/La₂O₃, 730°C for 10 h; Na/ Yb₂O₃, 760°C for 11 h; Na/CeO₂, 780°C for 17 h.

FIG. 3. ISS spectra of (a) pure $CeO₂$ and (b) a used 4% Na⁺/CeO₂ catalyst.

sistent with the previous catalytic experiments which demonstrated that the addition of $Na₂CO₃$ transformed CeO₂ from a totally nonselective $CH₄$ oxidation catalyst to one which gave ca. 60% selectivity to higher hydrocarbons (4). Moreover, it was observed that $CeO₂$ was transformed from a good $CH₃$ • radical scavenger to a good generator of gas phase $CH₃ \cdot$ radicals.

A calculation of a hypothetical *uniform* layer of Na₂CO₃ on a 4% Na⁺/CeO₂ catalyst shows that the thickness would be about 400 \check{A} , which corresponds to about 90 layers of the carbonate. Obviously, if such a uniform layer existed, then no Ce would have been evident in the XPS spectrum. We conclude, therefore, that the used Na^+/CeO , catalyst was completely, but nonuniformly, covered with sodium compounds that include sodium carbonate and sodium oxides, particularly under reaction conditions.

It was found that the atomic ratios, determined from the XPS spectra, strongly depended on the nature of the support and on the previous history of the catalyst. The changes in surface stoichiometry of 4% Na^+/CeO ₂ catalyst and a 4% Na^+/Yb_2O_3 catalyst were determined as a function of the catalyst treatment. After calcination in air at 700°C for 16 h, both catalysts exhibited a Na : Ln ratio of about 1.2. After being used

in the catalytic reaction for 17-20 h at 780°C, the Na : Ln ratio increased to 3.7 for Na⁺/ CeO₂, but decreased to 0.5 for Na^+/Yb_2O_3 It is not clear whether the decrease observed with the latter catalyst resulted from loss of $Na₂CO₃$ from the surface or whether agglomeration, rather than spreading of the $Na_2CO₃/Na₂O₂$, occurred. In either case, it is evident that $CeO₂$ has a stronger affinity than Yb_2O_3 for surface sodium compounds.

The effect of sample treatment on the spreading of Na_2CO_3 , and perhaps of Na₂O₂, over $CeO₂$ is also evident in the O 1s spectra of Fig. 2. Exposure of the catalyst to $O₂$ and then to reactants at 780°C caused an increase in intensity of the peak at 531-532 eV, relative to the peak at 529 eV. Moreover, there was a distinct shift of the broad maximum at about 532 eV to a sharper maximum at 531 eV. This shift is consistent with the partial transformation of $Na₂CO₃$ (532) eV) to Na₂O₂ (531 eV) (9). These results support the postulate that $CeO₂$, which has an O^{2-} peak at 529 eV, is covered by sodium compounds which are characterized by O 1s peaks at 531-532 eV.

Catalytic results. Prior to carrying out specific activity measurements the three lanthanide oxide catalysts, with and without added sodium carbonate, were studied under nearly oxygen-limiting conditions, and the results are summarized in Table 2. The sodium-modified catalysts are characterized by C_2^+ selectivities of 52-57% and by productivities which compare favorably with most of the more active catalysts that have been reported (3). The productivities given here and elsewhere may be misleading, however, since the systems are nearly oxygen limited. Pure $La₂O₃$ was somewhat less selective than 4% Na⁺/La₂O₃, while pure $CeO₂$, as noted previously, produced mainly $CO₂$ and H₂O. The conversions and selectivities for Na^+/La_2O_3 are comparable to those reported previously by DeBoy and Hicks *(10)* at somewhat greater temperatures and space velocities. We are not aware of any comparable study of $Na^{+}/Yb_{2}O_{3}$.

In contrast to this work, 4% Na⁺/CeO₂

TABLE 2

 Na_2CO_3 10 5.3 47.8 0.9 3.2 0.1 2.8 6.6 0.08 La_2O_3 >99 25.1 46.2 10.4 9.9 0.8 7.8 43.2 0.38 $\rm CeO_2$ 100 13.7 1.2 0.0 0.3 0.0 0.0 51.0 0.01 Yb_2O_3 83 20.1 40.3 6.5 7.3 0.5 9.0 34.8 0.27 4% Na+/La203 73 21.8 56.8 9.6 12.2 1.0 2.2 34.0 0.41 4%Na+/CeOz 81 21.7 52.7 8.2 12.1 0.8 0.0 39.3 0.38 4% Na⁺/Yb₂O₃ 81 21.9 52.3 8.3 12.1 0.8 2.3 38.2 0.38

^a 0.50 g of 20-40 mesh catalyst chips was loaded into an 11 mm i.d. Al₂O₃ reactor. Total flow rate = 84 ml/ min; CH₄: $O_2 = 5.5$: 1; P(CH₄) = 0.5 atm; $T_{in} = 775$ °C; $P_{total} = 1$ atm.

 b^b C⁺ productivity : g(CH₄ to C⁺)/g(catalyst)/h.

has been reported to be quite a poor catalyst in the redox mode (5) . We tested our Na⁺/ CeO₂ catalyst in the redox mode and found it to be nearly as productive as in the co-feed mode. This discrepancy in results probably arises from variations in the method of preparation, including the calcination temperature. $CeO₂$ has been used in automotive emission control catalysts because of its ability to store and release oxygen in a redox process *(11, 12),* and it has been reported that the oxygen storage capacities of $CeO₂$ and of noble metal/ $CeO₂$ catalysts change with pretreatment temperature. For example, a general decrease in the oxygen storage capacity of the catalysts was observed when the calcination temperature was increased from 600 to 800°C *(11).* The poor redox mode performance of the 4% Na⁺/CeO₂ catalyst reported previously (5) may have resuited from its calcination at 900°C for 16 h before testing.

The sodium-promoted catalysts and pure $Na₂CO₃$ were also studied under nearly differential conditions so that their specific activities could be more meaningfully compared, and the results are reported in Table 3. Results for the pure lanthanide oxides are also reported in Table 3, but over these catalysts the reactions were oxygen limited. Obviously, the conditions chosen for the data of Table 3 were not those that would give maximum C_2^+ selectivities or yields. Here, it should be noted that C_2H_4 and C_2H_6 were the major C_2^+ products, and the amount of higher hydrocarbons was less than 5% of the total. From the results in Table 3, it is apparent that the addition of sodium carbonate to a lanthanide oxide decreased both the percent conversion and the specific activity per unit surface area.

In Table 3, the specific activities are compared for four Na^+/Ln_rO_v catalysts and for nominally pure $Na₂CO₃$ under the same conditions. Although the total activities of these catalysts (based on CH₄ conversion) varied by a factor of more than 40, the specific activities varied by a factor of only 2.5. If one considers the catalysts 4% Na⁺/CeO₂, 10% Na⁺/CeO₂, and Na₂CO₃, the specific activities were virtually identical. These results are consistent with the observation that sodium compounds essentially cover the $CeO₂$ surface, and therefore the observed reaction rate might be expected to reflect the activity of this sodium carbonate/ sodium oxide phase. The specific activity of the Na⁺/La₂O₃ catalyst was slightly greater than those of the latter three catalysts, but was substantially less than that of the pure $La₂O₃$. We conclude, therefore, that the activity of this catalyst was also largely a result

Catalyst	$CH4$ Conv. ^{<i>a</i>} (%)	C^+ , Prod. ^b	Surface Area (m_2/g)	Specific Activity (per unit area)	$[CH, \cdot]$ ^c
La ₂ O ₃	21.9^{d}	3.08	2.2	$(10.0)^d$	4.4
CeO ₂	11.0 ^d	0.0	2.5	$(4.6)^d$	0.0
Yb_2O_3	17.3	1.97	1.8	9.6	1.1
Na ₂ CO ₃	0.2	0.02	0.08	3.0	3.7
4% Na/La ₂ O ₃	6.1	0.75	1.5	4.1	3.3
4% Na/CeO ₂	2.5	0.23	0.84	3.0	3.6
4% Na/Yb ₂ O ₃	8.7	0.95	1.3	6.5	4.6
10% Na/CeO ₂	3.5	0.28	1.2	2.9	2.3

TABLE 3 Catalytic Properties of Ln_xO_y , Na₂CO₃, and Na/Ln_xO_y for Methane Coupling

^{*a*} 0.050 g catalyst chips in a 3-mm i.d. Al₂O₃ reactor; WHSV = 25.7 h⁻¹; P(CH₄) = 0.5 atm; CH₄: O₂ = 5:1; Temperature = 730° C; Pressure = 1 atm.

 b^b C₂⁺ productivity, g(CH₄ to C₂⁺)/g(catalyst)/h.

^c Relative rate of CH₃ · radical formation, $m^{-2} \cdot s^{-1}$: 0.30 g catalyst; $P = 1.5$ Torr; $T = 730$ °C; Flow rates, (ml/min) : He 3.9; CH₄ 1.2; O₂ 0.028.

 d Under O₂-limited conditions.

of the sodium carbonate/sodium oxide phase. The specific activity of the $Na^{+}/$ $Yb₂O₃$ catalyst was somewhat greater than expected on the basis of the $Na₂CO₃$ activity, which might indicate an incomplete coverage of Yb_2O_3 by the sodium compounds.

The abilities of the catalysts to generate gas phase $CH_3 \cdot$ radicals also parallel the specific activities of the $Na₂CO₃$ and the *Na+/LnxOy* catalysts; thus, we conclude that a mechanism involving the role of surface-generated gas-phase radicals is common to all of these catalysts. The agreement between the $CH₄$ conversion and the $CH₃$ · radical production over the pure lanthanide oxides is not as good, however, and may reflect the oxygen-limiting conditions. As observed previously, $CeO₂$ did not produce any gas phase $CH₃$ radicals, which is consistent with the absence of C_2^+ products.

Although the Na^+/Ln_rO_r catalysts were largely covered by a sodium carbonate/sodium oxide phase, we believe that the sodium oxide component, probably Na_2O_2 , is responsible for the activation of $CH₄$. A representation of such a catalyst is given in Fig. 4. Here, Na₂O is in equilibrium with Na₂O₂ through the reaction

$$
Na2O + \frac{1}{2}O2 \rightleftharpoons Na2O2 (2)
$$

Otsuka and co-workers *(13)* have provided convincing evidence that $Na₂O₂$ is capable of stoichiometrically converting CH_4 to C_2 products at temperatures as low as 400°C. By contrast, the formation of $Na₂CO₃$ via the equilibrium reaction

$$
Na2O + CO2 \rightleftharpoons Na2CO3 (3)
$$

has an adverse effect both on the generation of $CH₃$ · radicals and on the conversion of $CH₄$ (14, 15). In view of the similarity in specific activities of Na₂CO₃, Na⁺/CeO₂, and Na^+/La_2O_3 , one may conclude that the

FIG. 4. Scheme of Ln_xO_y catalyst covered with sodium compounds.

lanthanide oxide does not significantly influence this equilbrium.

In many respects, the concepts introduced here extend and confirm the model developed by Gaffney *et al. (5)* **to explalin** the catalytic properties of $Na^{+}/Pr_{6}O_{11}$. According to that model, CH₄ is activated by $Na₂O₂$, and the regeneration of $Na₂O₂$ is facilitated by a rapid $Pr³⁺ \rightleftharpoons Pr⁴$ redox couple. **In view of this study and our previous paper (4), it also seems that the presence of a sodium carbonate/sodium oxide phase on the** surface prevents $CH_3 \cdot$ radicals from reacting with Pr₆O₁₁, which would result ultimately in the formation of CO₂.

Finally, it should be pointed out that the present model does not preclude the activa- $\text{tion of } CH_4$ by centers of the type $[\text{Na}^+\text{O}^-]$ that are formed, for example, when Na⁺ substitutes for Ca^{2+} ions in CaO (7). Impor**tant distinctions between the predominance** of $[Na⁺O⁻]$ or $Na₂O₂$ as centers for the activation of $CH₄$ can be made on the basis of **(i) a suitable match between the guest and host ionic radii and (ii) the temperature at** which good C_2 selectivity is attained. The formation of centers of the type $[M^+O^-]$ **requires that the ionic radius of the alkali metal ion be less than or equal to the size of the metal ion in the host oxide. Further**more, the presence of Na₂O₂ under steady**state reaction conditions requires that the equilibrium of reaction (3) be shifted to the** left. Thus, $Na₂O$, and presumably $Na₂O₂$, is **favored by higher temperatures. The importance of these factors is illustrated by the two catalysts Li ÷/MgO and Na +/MgO. The former is characterized by [Li + O-] centers** and high C_2 yields at temperatures $\leq 720^{\circ}$ C (16) . Moreover, the conversion of $Li₂O$ to $Li₂CO₃$ has almost no effect on $C₂$ productiv**ity** *(17).* **By contrast, Na÷/MgO has no [Na÷O -] centers because of the mismatch in ionic size, and the catalyst changes from**

a poor one for oxidative coupling at $\leq 700^{\circ}$ C **to a relatively good one at 750°C** *(18, 19).*

ACKNOWLEDGMENTS

We acknowledge financial support of this work by the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy.

REFERENCES

- 1. Otsuka, K., Jinno, K., **and Morikawa,** A., *J. Catal.* 100, 353 (1986).
- 2. Campbell, K. D., Zhang, H., **and Lunsford,** J. H., *J. Phys. Chem.* 92, 750 (1988).
- 3. Hutchings, G. J., Scurrell, M. S., **and Woodhouse,** J. R., *Chem. Soc. Rev.* 18, 251 (1989).
- 4. Tong, Y., Rosynek, M. P., **and Lunsford,** J. H., J. *Phys. Chem.* 93, 2896 (1989).
- 5. Gaffney, A. M., Jones, C. A., Leonard, J. J., **and Sofranko,** *J. A., J. Catal.* 114, 422 (1988).
- 6. Martir, W., **and Lunsford,** *J. H., J. Amer. Chem. Soc.* 103, 3728 (1981).
- 7. Lin, C.-H., Wang, J., **and Lunsford,** *J. H., J. Catal.* 111, 302 (1988).
- 8. Kharas, K. C. C., **and Lunsford,** *J. H., J. Amer. Chem. Soc.* 111, 2336 (1989).
- 9. The O 1s binding energies of Na_2CO and Na_2O_2 **were determined in our laboratory by** K. C. C. Kharas.
- *10.* DeBoy, J. M., and Hicks, R. F., *J. Chem. Soc. Chem. Commun.,* 982 (1988).
- *11.* Yao, A. C., and Yu Yao, Y. F., *J. Catal*. 86, 254 (1984).
- *12.* Loof, P., Kasemo, B., and Keek, K.-E., *J. Catal.* 118, 339 (1989).
- *13.* Otsuka, K., Said, A. A., Jinno, K., and Komatsu, T., *Chem. Lett.* 77, (1988).
- *14.* Campbell, K. D., **and Lunsford,** *J. H., J. Phys. Chem.* 92, 5792 (1988).
- *15.* Korf, S. J., Roos, J. A., deBruijn, M. A., **van** Ommen, J. G., and Ross, J. R. H., *J. Chem. Soc. Chem. Commun.,* 1433 (1987).
- 16. lto, T., Wang, J.-X., Lin, C.-H., **and Lunsford,** *J. H., J. Amer. Chem. Soc.* 107, 5062 (1985).
- *17.* Lunsford, J. H., Cisneros, M. D. Hinson, P. G., **Tong, Y., and** Zhang, H., *Faraday Discuss. Chem. Soc.* 87, paper 219 (1989).
- *18.* Lin, C.-H., Ito, T., Wang, J.-X., **and Lunsford,** J. H., *J. Amer. Chem. Soc.* 109, 4808 (1987).
- *19.* lwamats, E., Moryama, T., Takasaki, N., **and** Aika, *K., J. Chem. Soc. Chem. Commun.* 19 (1986).